loader
15 May , 2020

Dijkstra算法(迪杰斯特拉算法)详解

author

skywang12345 博客园

shape animated shape animated shape animated

使用第三方账号注册

使用手机号/邮箱注册

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

Dijkstra算法基本思想

通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是”起点s到该顶点的路径”。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。

Dijkstra算法操作步骤

初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。

更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

Dijkstra算法(迪杰斯特拉算法)详解

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。以下B节点中23应为13。

Dijkstra算法(迪杰斯特拉算法)详解

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。

此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。

上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。

此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。

上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。

此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。

此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。

此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

Dijkstra算法代码

邻接矩阵为例,

// 邻接矩阵
typedef struct _graph
{
    char vexs[MAX];       // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX]; // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
    char start; // 边的起点
    char end;   // 边的终点
    int weight; // 边的权重
}EData;

Graph是邻接矩阵对应的结构体。

vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。

例如,matrix[i][j]=1,则表示”顶点i(即vexs[i])”和”顶点j(即vexs[j])”是邻接点;matrix[i][j]=0,则表示它们不是邻接点。

EData是邻接矩阵边对应的结构体。

Dijkstra算法

/*
 * Dijkstra最短路径。
 * 即,统计图(G)中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *        G -- 图
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void dijkstra(Graph G, int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。
    // 初始化
    for (i = 0; i < G.vexnum; i++)
    {
        flag[i] = 0;              // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = G.matrix[vs][i];// 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }
    // 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;
    // 遍历G.vexnum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < G.vexnum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < G.vexnum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;
        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < G.vexnum; j++)
        {
            tmp = (G.matrix[k][j]==INF ? INF : (min + G.matrix[k][j])); // 防止溢出
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }
    // 打印dijkstra最短路径的结果
    printf("dijkstra(%c): \n", G.vexs[vs]);
    for (i = 0; i < G.vexnum; i++)
        printf("  shortest(%c, %c)=%d\n", G.vexs[vs], G.vexs[i], dist[i]);
}

Dijkstra算法的代码实现(c++)

Dijkstra.h文件的代码

/************************************************************/
/*                程序作者:Willam                          */
/*                程序完成时间:2017/3/8                    */
/*                有任何问题请联系:2930526477@qq.com       */
/************************************************************/
#pragma once
//#pragma once是一个比较常用的C/C++杂注,
//只要在头文件的最开始加入这条杂注,
//就能够保证头文件只被编译一次。
#include<iostream>
#include<string>
using namespace std;
/*
本程序是使用Dijkstra算法实现求解最短路径的问题
采用的邻接矩阵来存储图
*/
//记录起点到每个顶点的最短路径的信息
struct Dis 
{
    string path;
    int value;
    bool visit;
    Dis() {
        visit = false;
        value = 0;
        path = "";
    }
};
class Graph_DG 
{
private:
    int vexnum;   //图的顶点个数
    int edge;     //图的边数
    int **arc;   //邻接矩阵
    Dis * dis;   //记录各个顶点最短路径的信息
public:
    //构造函数
    Graph_DG(int vexnum, int edge);
    //析构函数
    ~Graph_DG();
    // 判断我们每次输入的的边的信息是否合法
    //顶点从1开始编号
    bool check_edge_value(int start, int end, int weight);
    //创建图
    void createGraph();
    //打印邻接矩阵
    void print();
    //求最短路径
    void Dijkstra(int begin);
    //打印最短路径
    void print_path(int);
};

Dijkstra.cpp文件的代码

#include"Dijkstra.h"
//构造函数
Graph_DG::Graph_DG(int vexnum, int edge) 
{
    //初始化顶点数和边数
    this->vexnum = vexnum;
    this->edge = edge;
    //为邻接矩阵开辟空间和赋初值
    arc = new int*[this->vexnum];
    dis = new Dis[this->vexnum];
    for (int i = 0; i < this->vexnum; i++) {
        arc[i] = new int[this->vexnum];
        for (int k = 0; k < this->vexnum; k++) {
            //邻接矩阵初始化为无穷大
                arc[i][k] = INT_MAX;
        }
    }
}
//析构函数
Graph_DG::~Graph_DG() {
    delete[] dis;
    for (int i = 0; i < this->vexnum; i++) {
        delete this->arc[i];
    }
    delete arc;
}
// 判断我们每次输入的的边的信息是否合法
//顶点从1开始编号
bool Graph_DG::check_edge_value(int start, int end, int weight) {
    if (start<1 || end<1 || start>vexnum || end>vexnum || weight < 0) {
        return false;
    }
    return true;
}
void Graph_DG::createGraph() 
{
    cout << "请输入每条边的起点和终点(顶点编号从1开始)以及其权重" << endl;
    int start;
    int end;
    int weight;
    int count = 0;
    while (count != this->edge) {
        cin >> start >> end >> weight;
        //首先判断边的信息是否合法
        while (!this->check_edge_value(start, end, weight)) {
            cout << "输入的边的信息不合法,请重新输入" << endl;
            cin >> start >> end >> weight;
        }
        //对邻接矩阵对应上的点赋值
        arc[start - 1][end - 1] = weight;
        //无向图添加上这行代码
        //arc[end - 1][start - 1] = weight;
        ++count;
    }
}
void Graph_DG::print() 
{
    cout << "图的邻接矩阵为:" << endl;
    int count_row = 0; //打印行的标签
    int count_col = 0; //打印列的标签
    //开始打印
    while (count_row != this->vexnum) {
        count_col = 0;
        while (count_col != this->vexnum) {
            if (arc[count_row][count_col] == INT_MAX)
                cout << "∞" << " ";
            else
            cout << arc[count_row][count_col] << " ";
            ++count_col;
        }
        cout << endl;
        ++count_row;
    }
}
void Graph_DG::Dijkstra(int begin)
{
    //首先初始化我们的dis数组
    int i;
    for (i = 0; i < this->vexnum; i++) {
        //设置当前的路径
        dis[i].path = "v" + to_string(begin) + "-->v" + to_string(i + 1);
        dis[i].value = arc[begin - 1][i];
    }
    //设置起点的到起点的路径为0
    dis[begin - 1].value = 0;
    dis[begin - 1].visit = true;
    int count = 1;
    //计算剩余的顶点的最短路径(剩余this->vexnum-1个顶点)
    while (count != this->vexnum) {
        //temp用于保存当前dis数组中最小的那个下标
        //min记录的当前的最小值
        int temp=0;
        int min = INT_MAX;
        for (i = 0; i < this->vexnum; i++) {
            if (!dis[i].visit && dis[i].value<min) {
                min = dis[i].value;
                temp = i;
            }
        }
        //cout << temp + 1 << "  "<<min << endl;
        //把temp对应的顶点加入到已经找到的最短路径的集合中
        dis[temp].visit = true;
        ++count;
        for (i = 0; i < this->vexnum; i++) {
            //注意这里的条件arc[temp][i]!=INT_MAX必须加,不然会出现溢出,从而造成程序异常
            if (!dis[i].visit && arc[temp][i]!=INT_MAX && (dis[temp].value + arc[temp][i]) < dis[i].value) {
                //如果新得到的边可以影响其他为访问的顶点,那就就更新它的最短路径和长度
                dis[i].value = dis[temp].value + arc[temp][i];
                dis[i].path = dis[temp].path + "-->v" + to_string(i + 1);
            }
        }
    }
}
void Graph_DG::print_path(int begin) 
{
    string str;
    str = "v" + to_string(begin);
    cout << "以"<<str<<"为起点的图的最短路径为:" << endl;
    for (int i = 0; i != this->vexnum; i++) {
        if(dis[i].value!=INT_MAX)
        cout << dis[i].path << "=" << dis[i].value << endl;
        else {
            cout << dis[i].path << "是无最短路径的" << endl;
        }
    }
}

main.cpp文件的代码

#include"Dijkstra.h"
//检验输入边数和顶点数的值是否有效,可以自己推算为啥:
//顶点数和边数的关系是:((Vexnum*(Vexnum - 1)) / 2) < edge
bool check(int Vexnum, int edge) {
    if (Vexnum <= 0 || edge <= 0 || ((Vexnum*(Vexnum - 1)) / 2) < edge)
        return false;
    return true;
}
int main() 
{
    int vexnum; int edge;
    cout << "输入图的顶点个数和边的条数:" << endl;
    cin >> vexnum >> edge;
    while (!check(vexnum, edge)) {
        cout << "输入的数值不合法,请重新输入" << endl;
        cin >> vexnum >> edge;
    }
    Graph_DG graph(vexnum, edge);
    graph.createGraph();
    graph.print();
    graph.Dijkstra(1);
    graph.print_path(1);
    system("pause");
    return 0;
}

输入:

6 8
1 3 10
1 5 30
1 6 100
2 3 5
3 4 50
4 6 10
5 6 60
5 4 20

从输出可以看出,程序的结果和我们之前手动计算的结果是一样的。

Dijkstra算法(迪杰斯特拉算法)详解

Robin Binar Themeix

Onubia, turpis inceptos pharetra. Ipsum erat rutrum, luctus non rhoncus quam quisque posuere, eros pede leo facilisis at risus. Ea sit consectetuer suscipit pede hac purus, erat nec

猜你喜欢

WinSxS是什么,C盘WinSxS是什么文件夹?

11 Dec , 2018

2018-12-11 00:01

mac下安装composer,macos系统下全局安装composer

11 Dec , 2018

2018-12-11 00:11

区块链是什么,区块链到底是什么意思,看完这段话就懂了

11 Dec , 2018

2018-12-11 00:19

wireshark使用教程,网络抓包工具wireshark中文版使用教程

11 Dec , 2018

2018-12-11 00:48

VBS整人代码大集合,学会用VBS来编小程序对心仪的女神表白

11 Dec , 2018

2018-12-11 02:06

网友评论 ( 0 条评论 )

评论